IRRIGATION SCHEDULING METHODS

Irrigation requires a relatively high investment in equipment, fuel, maintenance and labor, but offers a significant potential for increasing net farm income. Frequency of application as well as amounts of water applied directly affect annual costs.

To schedule irrigation for most efficient use of water and maximum production, it is essential to frequently determine the soil water conditions throughout the root zone of the crop being grown. A number of methods for doing this have been developed and used with varying degrees of success, but the two which have proven most practical for field use are methods using tensiometers and electrical resistance meters. In comparison to investment in irrigation equipment, these instruments are relatively inexpensive. A third method using a neutron probe is being used in some areas. The neutron probe is very expensive compared to tensiometers and therefore not suitable for use by some individuals. When properly used and coupled with grower experience any measuring device can improve the irrigator's chances of success.

The following discussion covers the working principles of methods and their use.

MOISTURE BALANCE METHOD

The principle of the moisture balance method is shown in figure 1. The object is to obtain a balance of incoming and outgoing soil moisture so that adequate soil moisture is maintained for the plant. Inputs include incoming water in any form whether rainfall or irrigation. Outputs include any type of water removal. Water removal is more commonly referred to as evapotranspiration (ET). Evapotranspiration is usually expressed in inches per day. It consists of moisture removal by the plant and moisture loss due to evaporation. Two variations of the moisture balance method are used. One uses crop use curves, the other uses pan evaporation data.

To use either variation you must know your soil type and the available water holding capacity of the soil. This is obtained from your local soil conservation guide from your local Soil Conservation Service. Next you determine the zone you are trying to manage. This zone will vary according to the effective rooting depth of the particular crop. Usually 24 inches (2 feet) is the most that can be managed with irrigation. Determine the total water you have available to manage in this zone. It is desirable to only try to manage a percentage of this total water, usually 50 percent. As moisture is removed daily (by either crop use or evaporation) these amounts are subtracted from the adjusted moisture available column. When the moisture available approaches a zero balance it is time to irrigate. The amount to add depends on the soil type, but will usually be the same as the 50 percent value calculated earlier plus an added amount to account for application efficiencies less than 100%. (Typical application efficiencies for sprinkler irrigation equipment vary from 75 percent to 90 percent.) Moisture-use curves for various crops in Georgia are included at the end of this publication, along with pan evaporation coefficients (depending on which method you are using).
Example of Moisture Balance Method
Using Crop Use Curve

EXAMPLE: Tifton Soil Series. Assuming the upper 24 inches is the rooting depth (hardpans may change this), the total available water is 2.2 inches (from Conservation Irrigation Guide). Assume a 65-day-old corn crop.

Step 1. From the crop curve (see figure 5, page 9), this corresponds to a daily use rate of 0.32 inches per day.

Step 2. Determine irrigation by setting lower limit for moisture balance. For this example, use 50 percent as the limit. Then 1.1 inches of water will need to be replaced.

Step 3. Determine amount of irrigation to apply by dividing amount replaced by irrigation efficiency. Using 75 percent as the irrigation efficiency, the amount of irrigation to apply is:

\[\frac{1.1}{0.75} = 1.47 \text{ inches or 1.5 inches.} \]

Step 4. Determine frequency of irrigation by dividing amount replaced by moisture use per day. For this example:

\[\frac{1.1}{1.47} = 3.44 \text{ days.} \]

Step 5. Therefore it is necessary to apply 1.5 inches every 3.5 days to maintain 50 percent available moisture on corn that is 65 days old.

NOTE: THIS SAME PROCEDURE CAN BE USED FOR OTHER CROPS AS LONG AS YOU HAVE THE CROP USE CURVE. (SEE FIGURES 3 THROUGH 11 FOR ADDITIONAL CURVES.)

Example of Moisture Balance Method
Using Pan Evaporation Data

EXAMPLE: Tifton Soil Series. Assuming the upper 24 inches is the rooting depth (hardpans may change this), the total available water is 2.2 inches (from Conservation Irrigation Guide). Assume a 65-day-old corn crop.

Step 1. Local pan evaporation data (available from a local weather station) reports daily pan evaporation rates of 0.26 inches per day.

Step 2. The crop coefficient for 65 day old corn (see figure 13, page 12) is 1.06.

Step 3. Determine daily moisture removal by multiplying daily evaporation by crop coefficient.

\[0.26 \times 1.06 = 0.28 \text{ inches.} \]

Step 4. Determine irrigation by setting lower limit. For this example use 50 percent. Then 2.2 inches x 50 percent or 1.1 inches will need to be replaced.

Step 5. Determine amount of irrigation to apply by dividing amount replaced by irrigation efficiency. Using 75 percent as the irrigation efficiency, the amount of irrigation to apply is:

\[\frac{1.1}{0.75} = 1.47 \text{ inches or 1.5 inches.} \]

Step 6. Determine frequency of irrigation by dividing amount replaced by moisture use per day. For this example 1.1 inches divided by 0.28 inches = 3.93 or 4 days.

Step 7. For this example it is necessary to apply 1.5 inches every 4 days to maintain a balance with pan evaporation.

NOTE: THIS SAME PROCEDURE CAN BE USED FOR OTHER CROPS AS LONG AS YOU HAVE THE CROP COEFFICIENT CURVE. (SEE FIGURES 12, 13, & 14 FOR ADDITIONAL CROP COEFFICIENT CURVES.)
TENSIOMETERS

A tensiometer is a sealed, water-filled tube with a porous ceramic tip on the lower end and a vacuum gauge on the upper end. The tube is installed in the soil with the ceramic tip placed at the desired root zone depth and with the gauge above ground. In dry soil, water is drawn out of the instrument, reducing the water volume in the tube and creating a partial vacuum which is registered on the gauge. The drier the soil, the higher the reading. When the soil receives moisture through rainfall or irrigation the action is reversed. The vacuum inside the tube draws water from the soil back into the instrument which in turn results in lower gauge readings.

The amount of vacuum reflected by the gauge is a direct measurement of soil water tension or soil suction. The standard unit of measurement of soil water tension, or soil suction, is the “bar.” The bar is a unit of pressure (or vacuum) in the metric system and is approximately equivalent to one atmosphere or 14.5 lbs./sq. in. Most tensiometer gauges are calibrated in hundreds of a bar (called centibars) and graduated from zero to 100. In these units of calibration a tensiometer can operate in a range of 0 to 80 centibars.

Plant roots must overcome the soil suction (or the attraction that soil particles have for water) in the soil in order to withdraw and use this water. The measurement of soil suction is a direct indication of the amount of work the plant roots must do to get water from the soil. The tensiometer measures soil suction directly without calibration for soil type, salinity or temperature.

Location of Stations

There should be at least one, and preferably two, tensiometer locations (two or more tensiometers at one location being a station) for each area of the field that differs in the soil type and depth (figure 2). A station located in each different soil type enables you (through timing and duration of irrigation) to maintain the same amount of available water in all areas.

Try to select representative areas of the field for tensiometer stations. However, do not place them in low spots as they are not representative. It may be best to limit the total number of stations until you gain experience. After a trial period it will be easier to determine the total number needed.

Generally, you can select a location where tensiometers will not be in the way of field operations. Mark stations so you can avoid them with only minor inconvenience to equipment operators. To protect against accidental striking by tools or machinery, drive stakes near the instruments with colored flags or tape attached. You can also cover them with a box, a tile, a steel pipe or similar protective device (provided moisture movement within the soil is not impeded).

![Figure 2. Typical Tensiometer Location](image)

Tensiometers are usually installed at two depths in the root zone. The shallow depth guides irrigation timing; the deeper depth tells if the moisture was adequate. The broken line represents penetration depth for a particular irrigation. Tensiometers must be positioned to “see” the sprinkler.

Installation

Install tensiometers so that the tip is in the active root zone of the crop grown. Usually one depth will be needed for plants having active root zones less than 15 inches. However, use two for plants having active roots deeper than 15 inches. For deeper rooted plants (or in orchards) it may be desirable to have instruments at three different depths.

For most crops and soils, two depths per station are recommended. Set one with the tip at a depth of the first one-fourth of the root zone and the other at a depth of about three-fourths of the active root zone. When soil water is known at these depths, an accurate estimate can be made of water conditions throughout the root zone.

One method recommends inserting the ceramic tip into a prepared hole so that the walls of the tip are in close contact with undisturbed soil and roots. Prepare the hole by driving a steel rod or pipe (of the same diameter as the instrument tube) to the desired depth. Carefully remove the rod and push the tensiometer to the bottom of the hole. Press soil around the tensiometer at the surface and pile it slightly so water will not collect and seep down along the tube of the tensiometer.

Another method often used for installing tensiometers with equally good results is to bore the hole with a soil auger (1 1/4 inches) to the desired depth. Next make a slurry in the bottom of the hole with screened soil, place the tensiometer and backfill with screened soil, tamping the soil firmly around the tube with a 1/2-inch dowel.

Servicing

When preparing a tensiometer for installation, fol-
low the manufacturer's recommendations. This includes filling the instrument with solution and removing air from the gauge, the pores of the ceramic tip and all internal plastic parts. A service unit is available from some manufacturers which includes a hand vacuum pump for removing air and testing the gauge.

The tensiometer may need occasional refilling with water. The best time to add water is after an irrigation when the vacuum is low. After refilling, the vacuum pump may be used to remove air bubbles.

Interpreting Tensiometer Gauge Readings

Tensiometer readings reflect the relative wetness of the soil (high readings indicate a dry soil, low readings a wet soil). Although you can assume some general interpretations of the readings, experience irrigating a specific soil and crop will enable more accurate evaluations of soil-water conditions.

The following general guidelines to interpreting gauge readings may be used under most conditions:

Readings 0-10—This range indicates a nearly saturated soil and often occurs for one or two days following a rain or irrigation. Plant roots may suffer from lack of oxygen if readings in this range persist.

Readings 10-20—This range indicates field capacity. Discontinue irrigation in this range to prevent waste of water by percolation and also to prevent leaching of nutrients below the root zone.

Readings 20-60—This is the usual range for starting irrigation. Most field plants having root systems 18 inches deep or more will not suffer until readings reach the 40 to 50 range. Starting irrigations in this range insures maintaining readily available soil water at all times. It also provides a safety factor to compensate for practical problems such as delayed irrigation, or inability to obtain uniform distribution of water to all portions of the field.

Readings 70 and Higher—This is the stress range for most soils and crops. Deeper rooted crops in medium textured soils may not show signs of stress before readings reach 70. A reading of 70 does not necessarily indicate that all available water is used up, but that readily available water is below that required for maximum growth. For readings above 70, tensiometers are likely to break tension (the vacuum is destroyed) especially in coarser textured soils.

For irrigation systems that require several days to cover a given field (such as a center pivot), it will be necessary to anticipate how high the tension will go before the system reaches a given location in the field. In these cases it will be necessary to start the irrigation system at lower tensiometer readings so that some sections of the field do not get too dry before the system gets there. For instance, it is not unusual to start a center pivot at tensiometer readings of 1.5 or 20. This is especially true in the sandier soils which have a relatively low water holding capacity.

ELECTRICAL RESISTANCE METERS

How They Work

Electrical resistance meters determine soil moisture by measuring the electrical resistance between two wire grids embedded in a block of gypsum or similar material that is permanently embedded in the soil. The electrical resistance of the block varies with its moisture content, which in turn is dependent upon the moisture content of the soil in contact with it. As the soil dries, the block loses moisture and the electrical resistance increases. Therefore, resistance changes within the block as measured by the meter can be interpreted in terms of soil water content.

The blocks, which have stainless steel electrodes imbedded in them, are installed permanently at desired locations and depths in the soil. Insulated lead wires from each block are brought above the soil surface where they can be plugged into a portable resistance meter for reading. Lead wires are available in 3 feet, 5 feet and 7 feet lengths.

Calibration

Resistance blocks are generally calibrated in terms of soil water tension so as to make readings applicable across soil textures. Blocks should be calibrated for each soil type. The way blocks manufactured by different companies respond to changes in soil water tension varies considerably. For this reason each manufacturer furnishes calibration curves for their own instruments and blocks.

Location of Stations

The location and placement of blocks depend on the nature of the crop, the potential root zone, the type of soil (with regard to texture or sub-surface formation) and the profile of the field. Each group of blocks is called a "station" and consists of two or more blocks installed at various depths. Although it is not possible to give precise instructions which apply to all cases, there are some general guidelines.

1. Locate stations in representative areas of the
field. Avoid high or low spots. Select an area where plant population is representative of the field.

2. Keep the soil around the stations from becoming compacted when taking readings, especially where blocks are installed near the surface.

3. Locate stations well inside crop boundaries and midway between lateral positions for portable or solid set systems.

4. When using cable-tow systems, make sure the blocks are set so they will not be damaged by the sprinkler unit during its run, or when being moved to the next lane.

5. Locate stations within each quarter of the circle watered by center pivot systems at points that are easily accessible for reading.

6. For row crops, locate blocks directly in the row. For orchards, blocks are located near the drip line of a tree.

Installation of the Blocks

1. Soak blocks in water according to manufacturer's recommendations before installation. Soaking removes air from the blocks and insures accurate meter readings.

2. Using a soil probe or auger, bore a hole in the row slightly larger than the gypsum block. Make a separate hole for each block to the desired depth.

3. Crumble up at least 3 inches of soil removed from the hole and put it back into the hole. Pour about 1/2 cup of water into the hole to form a slurry of mud in the bottom.

4. Push the block firmly to the bottom of the hole, forcing the slurry to envelop the block. A good way to do this is to use a section of 1/2 inch electrical conduit or pipe; slip the conduit over the lead wire and against the top of the block.

5. Back fill the holes with soil 3 or 4 inches at a time, tamping firmly as the hole is filled.

6. Drive a stake midway between the filled holes and tie the wire leads to the stake. So you can identify the lead wires according to depth of block placement, tie one knot in the shallow block, 2 knots in the next deeper level, 3 knots in the deepest.

Depth of Installation

The active root zone of the crop determines the depth at which to place the blocks. Type of crop, soil depth and stage of growth largely determine the active root zone.

Install the blocks soon after planting to allow time for plant roots to grow around the blocks and to assure a positive contact between blocks and soil. Any separation between blocks and surrounding soil will lead to inaccurate readings.

When the seeds are first planted, irrigation may be needed to assure quick and uniform seed germination. Visual inspection of the soil near the seeds will indicate whether irrigation is needed. A minimum of two blocks per station is recommended; one shallow, one deep. Table 1 gives recommended depths for setting the blocks according to soil depth or active root zone.

<table>
<thead>
<tr>
<th>Soil Depth Or Active Root Zone (Inches)</th>
<th>Shallow Blocks (Inches)</th>
<th>Deep Blocks (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>36</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

Soil depth may be the limiting factor in determining the active root zone. Soils that have loamy sand or finer textured soil over lying an impermeable layer limit the potential root zone of deeper rooting crops. When soil depth is limiting, consider soil depth rather than active root zone when determining how deep to place the blocks.

The following generalizations apply to installation of all blocks:

1. The soil moisture measured is only that immediately surrounding the blocks. It is important, therefore, that the location is representative of the area concerned.

2. Place blocks in undisturbed soil if at all possible. When this is not possible, place at least one side of the blocks against undisturbed soil.

3. Duplicate installations 10 to 15 feet apart are desirable for checking readings.

4. Soak blocks, then install them in moist soil.

Interpreting Electrical Resistance Meter Readings

Available soil water may be expressed either in percent of the total potential reserve or in terms of suction necessary to draw water from the soil particles. Such
Table 2. Interpretation of Readings on Electrical Resistance Meters
As Related To Soil Moisture Tension

<table>
<thead>
<tr>
<th>Bar Tension</th>
<th>Meter Readings*</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearly Saturated</td>
<td>Less than 0.10</td>
<td>200</td>
</tr>
<tr>
<td>Field Capacity</td>
<td>to 0.20</td>
<td>180</td>
</tr>
<tr>
<td>Irrigation Range</td>
<td>to 0.60</td>
<td>160</td>
</tr>
<tr>
<td>Dry</td>
<td>Greater than 0.60</td>
<td>Less than 80</td>
</tr>
</tbody>
</table>

*These readings will vary according to meter type and soil type.

suction is referred to as negative pressure or tension, measured in bars. Table 2 is a guide to interpreting meter readings as they relate to soil moisture tension for one type meter. Graduations on the meter scale will not be the same for all makes or models and will vary with soil type. Meter manufacturers, however, always provide instructions for interpreting meter readings.

When to Start Irrigation

Instrument readings that indicate the need for irrigation will be different for various textured soils (see table 3). Start irrigation sooner on a sandy soil than on a clay soil, because sandy soils hold less water than clay soils at the same meter reading. When scheduling, take into account the time required for the system to complete irrigation of the entire field. Otherwise, the last part of the field to receive water may become too dry.

Start irrigation at higher meter readings during hot weather, high winds or low humidities, since loss of moisture is accelerated by these conditions.

When to Stop Irrigation

Early in the growing season, stop irrigation when the shallow meter readings show a wet condition. When deep sensor readings approach the values in table 3, it is an indication that roots are developing and extracting water from the soil at that depth. Stop irrigation when deep sensor readings indicate a wet condition. However, as long as the deep sensor readings do not drop, use the shallow sensors to start and stop irrigation.

How Often to Read Instruments

Frequency of reading depends on the rate of water used in relation to the amount of water held by the soil. Take readings frequently enough so that the change in soil water tension from one reading to the next is not greater than 10 to 15 centibars. Many irrigators take readings three times a week. If irrigation is more often than once a week, take daily readings.
NEUTRON PROBE

The determination of soil moisture by nuclear means has been practiced for almost two decades. Commercially available electronic instruments using this principle have been developed.

In field use, an access tube (usually aluminum) just large enough in diameter to admit the neutron probe is driven into the soil to the desired depth of moisture measurement. The probe is lowered to the level where a moisture determination is desired. A reading on the counter system is made and converted to percent of moisture by volume using calibration curves for the neutron instrument used.

The neutron moisture meter repeats measurements at the same soil site each time. Since a volume in the shape of a sphere is measured each time, the center for most probes should be no less than 12 inches below the soil surface to give accurate readings. Accurate measurements of moisture in the top foot of soil and for thin layers in a soil profile cannot be made with a depth type instrument. For thin layers of soil, a separate probe, called a surface density meter, needs to be used at the soil surface.

All radioactive substances are a potential health hazard. The probe of the neutron moisture meter emits radiation that may be dangerous. Handle this equipment according to all safety rules and follow the suggestions shown in the instruction book that comes with the instrument. The major disadvantages of the neutron probe is its high initial cost and the fact that a license is required to operate it. Table 4 compares the methods for moisture measurement.

KEEPING A CHART

You can obtain the full benefit of using tensiometers, electrical meters or neutron probes by recording readings and plotting them on a chart. Readings may be plotted directly in the field. Use different colored pencils for different depth tensiometers (or soil blocks) to make the chart easier to read. The chart lines show what has happened in the past. By projecting them ahead, you have an advance indication of what you can expect in a few days. This information is helpful in scheduling the next irrigation and in measuring the effectiveness of an irrigation (what depth of penetration was achieved and how soon the soil dried out).

Most manufacturers include charts with their instruments. If not included, they can easily be made. Record rainfall data along with the instrument reading to aid in evaluating soil water conditions. Charts for tensiometers and moisture blocks are included as figure 15 and figure 16.

<table>
<thead>
<tr>
<th>Table 4. Comparison of Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Expense</td>
</tr>
<tr>
<td>BALANCE METHOD</td>
</tr>
<tr>
<td>Tensiometers</td>
</tr>
<tr>
<td>Moisture Blocks</td>
</tr>
<tr>
<td>Neutron Meter</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>No Expense</td>
</tr>
<tr>
<td>Moderate Expense</td>
</tr>
<tr>
<td>Inexpensive</td>
</tr>
<tr>
<td>Expensive</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Operate Automated</td>
</tr>
<tr>
<td>Equipment</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Fair</td>
</tr>
<tr>
<td>Excellent</td>
</tr>
</tbody>
</table>

* A second type of block has been introduced in recent years. Sometimes called "solid-state" blocks, these devices CAN be used in sandy soil types at low soil water tensions. Results obtained using the solid-state blocks has been equal to or better than data obtained using conventional tensiometers. The procedures for installing and taking readings for this new type block is identical to the procedure for the "older" gypsum style block. However, the meter used to obtain readings is NOT interchangeable between the two types of blocks.
MOISTURE USE BY SOYBEANS

*When Planted May 15, South Georgia (Group VII Variety)

Figure 3.

MOISTURE USE BY COTTON PLANTS

Figure 4.

MOISTURE USE BY CORN

Figure 5.
MOISTURE USE BY TOBACCO

[Graph showing moisture use by tobacco over weeks after planting]

Figure 6.

MOISTURE USE BY PEANUTS

[Graph showing moisture use by peanuts over days after planting]

Figure 7.

MOISTURE USE FOR SNAP BEANS*

[Graph showing moisture use for spring and fall snap beans over days after planting]

*Typical One-Year Data - Tifton Coastal Plain Experiment Station - 1980
MOISTURE USE BY FALL CUCUMBERS

*Typical One-Year Data - Tifton Coastal Plain Experiment Station - 1980

Figure 9.

MOISTURE USE BY FALL LIMA BEANS

*Typical One-Year Data - Tifton Coastal Plain Experiment Station - 1980

Figure 10.

MOISTURE USE FOR SWEET CORN

*Typical One-Year Data - Tifton Coastal Plain Experiment Station - 1980

Figure 11.
Figure 12. Small Grains Crop Coefficient

Figure 13. Corn Crop Coefficient
COTTON CROP COEFFICIENT

PAN EVAPORATION CO-EFFICIENTS

Figure 14.
IRRIGATION SCHEDULING METHODS

prepared by
Kerry Harrison, Extension Engineer
Anthony Tyson, Extension Engineer

Irrigation requires a relatively high investment in equipment, fuel, maintenance and labor, but offers a significant potential for increasing net farm income. Frequency of application as well as amounts of water applied directly affect annual costs.

To schedule irrigation for most efficient use of water and maximum production, it is essential to frequently determine the soil water conditions throughout the root zone of the crop being grown. A number of methods for doing this have been developed and used with varying degrees of success, but the two which have proven most practical for field use are methods using tensiometers and electrical resistance meters. In comparison to investment in irrigation equipment, these instruments are relatively inexpensive. A third method using a neutron probe is being used in some areas. The neutron probe is very expensive compared to tensiometers and therefore not suitable for use by some individuals. When properly used and coupled with grower experience any measuring device can improve the irrigator's chances of success.

The following discussion covers the working principles of methods and their use.

MOISTURE BALANCE METHOD

The principle of the moisture balance method is shown in figure 1. The object is to obtain a balance of incoming and outgoing soil moisture so that adequate soil moisture is maintained for the plant. Inputs include incoming water in any form whether rainfall or irrigation. Outputs include any type of water removal. Water removal is more commonly referred to as evapotranspiration (ET). Evapotranspiration is usually expressed in inches per day. It consists of moisture removal by the plant and moisture loss due to evaporation. Two variations of the moisture balance method are used. One uses crop use curves, the other uses pan evaporation data.

Figure 1. Moisture Balance Method

To use either variation you must know your soil type and the available water holding capacity of the soil. This is obtained from your local soil conservation guide from your local Soil Conservation Service. Next you determine the zone you are trying to manage. This zone will vary according to the effective rooting depth of the particular crop. Usually 24 inches (2 feet) is the most that can be managed with irrigation. Determine the total water you have available to manage in this zone. It is desirable to only try to manage a percentage of this total water, usually 50 percent. As moisture is removed daily (by either crop use or evaporation) these amounts are subtracted from the adjusted moisture available column. When the moisture available approaches a zero balance it is time to irrigate. The amount to add depends on the soil type, but will usually be the same as the 50 percent value calculated earlier plus an added amount to account for application efficiencies less than 100%. (Typical application efficiencies for sprinkler irrigation equipment vary from 75 percent to 90 percent.) Moisture-use curves for various crops in Georgia are included at the end of this publication, along with pan evaporation coefficients (depending on which method you are using).