Turfgrass Fertility

Clint Waltz, Ph.D.
Associate Professor
The University of Georgia

Soil Test Reports
Interpretation & Understanding

Why Soil Sample?

Information
- Chemical way of estimating the nutrients available to the plant (i.e., a starting point for plant growth).
- Nutritional Needs & Soil Chemistry
 - Tool for making management decisions
- Environmental Protection
 - Phosphorus & Nitrate (NO₃⁻) – separate analysis
Why do we fertilize turf?

Basic Reasons

- **Color**
 - We are in a quality business – it must look good

- **Growth & Recovery**
 - Divots, wear and tear, surface interaction (play)
 - Yields are not important

UGA Soil Test Report

Information

- County Extension Office
 - Collect & submit
 - Interpret & modifications

- Direct to Ag. Services Lab
 - www.SoilTest123.com
 - Sampling instructions
 - Soil Test Kit

Components

- **Results**
 - Nutrients – P, K, Ca, Mg, & Zn
 - Relative sufficiency
 - pH – soil acidity

- **Recommendations**
 - Guide
 - Not instructions
Soil Test Report - Other

Other Information

★ Nutrients
 ✓ Na, Fe, Mn, S, Cu, & B
 ✓ NO₃-N

★ Soil Properties
 ✓ CEC, Base Saturation
 & Acidity
 ✓ EC & Soluble Salts
 ✓ OM

Soil Test - Example

Good Report or Bad

★ pH
 ✓ High – especially for SA
 ✓ Ca & Mg indicators

★ Phosphorus
 ✓ Over applied
 ✓ Not needed this season

★ Potassium
 ✓ Needed

★ Phosphorus
 ✓ Over applied
 ✓ Not needed this season

★ Potassium
 ✓ Needed
Purchasing a Fertilizer

Considerations

- **Price**
 - Know what’s in it!

- **Analysis or Grade**
 - % N, P₂O₅ & K₂O

- **Type of Nitrogen**
 - Soluble / fast release
 - Slow release

Analysis, Ratios, & Rates

What’s the Difference

- **Analysis**
 - % N, P₂O₅ & K₂O
 - 16-4-8

- **Ratio**
 - relative amount of N, P & K fertilizer product
 - Helps evaluate a fertilizer product for specific plant demands & soil characteristics
 - 4:1:2

- **Rate**
 - Amount of fertilizer applied over a given area
 - 1 lb N / 1000 ft²
 - More important than the fertilizer analysis or grade
Soil Acidity (pH)

pH

Two Tests
* pH
 ? Need
* Lime Buffer Capacity
 ✓ Adams-Evans Buffer
 ? How much

Adjusting pH (5.5 to 6.5)
* Lime
 ✓ increase pH
* Sulfur & some Fertilizers
 ✓ lowers pH
 ✓ NH₄⁺
 ✓ Urea
pH - Lime
- Slowly soluble
- Raise pH
- Pelletized & powdered
- Calcitic – calcium carbonate
 - calcium carbonate (CaCO$_3$)
- Dolomitic
 - calcium-magnesium carbonate (CaMg(CO$_3$)$_2$)

PH - Turfgrasses

Turfgrass Species
- **5.0 to 5.5**
 - Bahiagrass
- **5.0 to 6.0**
 - Centipedegrass

Turfgrass Species
- **5.5 to 6.5**
 - Bermudagrass
 - Centipedegrass - establishment
 - St. Augustinegrass
 - Seashore Paspalum
 - Tall Fescue
 - Kentucky Bluegrass
- **6.0 to 7.0** – Zoysiagrass
Relative Nutrient Availability at Varying Soil pH Values

<table>
<thead>
<tr>
<th>pH 4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
<th>8.5</th>
<th>9.0</th>
<th>9.5</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Phosphorus</td>
<td>Potassium</td>
<td>Calcium</td>
<td>magnesium</td>
<td>Iron</td>
<td>Molybdenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td>Nitrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen (N)

Role in the plant

- Synthesis of proteins & chlorophyll
 - DNA & RNA
 - Protein composes 85% of N in plants
- Needed for growth of all plant parts
- Mobile
 - from old to young growing regions

Courtesy of Dr. Tom Samples – Univ. of Tennessee
Nitrogen (N)

In Soil
- Increases – U.S.
 - From south to north
 - From east to west
 - Result of temperatures & soil water
- Surface has greatest N concentration
 - Aeration & microbial activity
 - Upper 3 to 10 inches

Timing N Fertilization

Warm-season Grasses
- Soil Temperatures
 - Active root growth & activity
 - 65°F
 - Consistently – multiple days
 - 4-inch depth
- www.GeorgiaWeather.net
- Combination products

Is now a good time to fertilize?

- **Nitrogen**
 - Let soil temps guide
- **Phosphorus & Potassium**
 - Soil test
 - Potassium (K) good carrier
 - preemergence herbicide
 - insecticide
Cultural Practices

Fertilization

- When - soil test
- What to use – Soil Test
- How Much - rarely exceed 1 lb N per 1000 ft²
- Application - uniform (2 directions)

Adverse Affects

High N Fertilization

- Succulence or Juiciness of Vegetation
 - Increased proportion of water w/in cells
- Thinner cell walls
- Promotion of protein synthesis
 - expense of carbohydrate synthesis & accumulation

Adverse Affects

High N Fertilization

- Susceptibility to pests
 - diseases – Brown Patch, SDS, etc.
 - insects – sap suckers
 - thin cell walls
- Susceptibility to environmental stresses
 - drought
Available Sources of N

Plants use inorganic N

- Nitrate (NO$_3^-$)
 - easily leached
- Ammonium (NH$_4^+$)
 - converted to NO$_3^-$ in soil – nitrification
 - Nitrification – rapid in warm, aerated soils
 - lowers soil pH

Origins of N

Organic

- Natural Organics
 - thatch / crop residue
 - sewage sludge
 - poultry feather meal
 - bone meal blood
 - manure

Organic N

Benefits

- low turf burn potential
- uniform N release
- little effect on soil pH
- low leaching losses
Organic N

Suggested Benefits

✓ may enhance plant metabolism & disease resistance
✓ contain sulfur, iron, & trace elements

Organic N

Disadvantages

✗ low N content
✓ 1 to 8%
✓ $$/per pound of nutrient
✗ low N release cool weather
✓ microbe dependent
✓ temperature mediated

Organic N

Disadvantages (cont.)

✗ objectionable odor
✗ salts, heavy metals, weed seeds
✗ increased insect populations
✓ black turfgrass ataenius
Origins of N

Synthetic Organics

- water soluble
- urea → NH₄⁺
 - rapid release
- urea formaldehyde
 - slowly soluble
- isobutylidene diurea (IBDU)
 - temp dependent

Inorganic

- ammonium nitrate
- ammonium sulfate
- calcium nitrate
- potassium nitrate
- nitrate of soda

Phosphorus (P)
Fertilization

Phosphorus (P₂O₅)
- Reported in oxide form
- 43% P
- Slowly soluble
- Super Phosphate (0-18-0)
- Triple Super (0-45-0)
- Promotes Rooting
- Till into soil

Phosphorus Fertility

Phosphorus (P)
- Granular P ferts. are 90 to 100% water-soluble
- Dissolve rapidly in moist soil
- Hydrolysis of water-soluble P increase when temps. increased from 41° F to 95° F
- At field capacity, 50 – 80% water-soluble P will move out of granular in 24 hours; 20 – 50% at 2 – 4% soil moisture.

Phosphorus (P)

Role in the plant
- Nucleic acids & nuclei of plant cells
 - DNA & RNA
- Energy
 - ATP – adenosine triphosphate
 - Other P containing components
- Location – growing points / tips
Phosphorus (P)

Forms & Sources
- Absorbed by plants
 - Phosphate - H_2PO_4^- & HPO_4^{2-}
- Sources
 - Natural - superphosphate
 - Organic – e.g. bone meal
 - Chemical – ammoniated phosphate

Considerations
- Relatively immobile in soils
- Effect on soil pH
 - Ammoniated phosphates lower soil pH
 - Superphosphate (SP) & triple SP increase soil pH
- Environmental hazards
 - Water quality – algal bloom
 - Soil test for need

Proper Fertilizer Usage

Common Sense
- Proper rate
- Application (sidewalks)
- Calibration
- Timing
Potassium (K)

Fertilization

Potassium (K₂O)
- 83% K
- “Health” element
- Promotes Rooting
- Stress preconditioning
- Till into soil
- N:K (2:1)
- Part of last application (1:1)

Potassium (K)

Role in the plant
- Maintaining plant’s water status
 - cellular turgor pressure
 - opening & closing of stomata
 - osmotic pressure for water to enter roots
- Enzyme activation
 - associate with >60 enzymes
Potassium (K)

Mobility

 ikea Soil
✓ readily leached
✓ commonly low to deficient in Georgia soils

 IKEA Plant
✓ translocated to young meristematic tissue
✓ interveinal yellowing of older leaves
✓ root entrance competition with K⁺, Ca⁺² & Mg⁺²

Potassium (K)

Forms & Sources

IKEA Absorbed by plants
✓ Ion form – K⁺
✓ From the soil solution

IKEA Sources
✓ Muriate of potash – potassium chloride (KCl)
✓ 1° K-containing fertilizer
✓ Sulfate of potash – potassium sulfate (K₂SO₄)
✓ Saltpeter – potassium nitrate (KNO₃)

Turfgrass Management App

For Sale Application

IKEA iTunes – iPhone & iPod Touch
IKEA BlackBerry

www.GeorgiaTurf.com
Important Dates in 2010

UGA Turfgrass Field Day – August 4
Turfgrass Institute – Dec. 8 & 9
For other local programs contact your CEA

Thank You

Visit
www.Georgiaturf.com