Why Soil Sample?

Information

★ Chemical way of estimating the nutrients available to the plant (i.e., a starting point for plant growth).

★ Nutritional Needs & Soil Chemistry
 ✔ Tool for making management decisions

★ Environmental Protection
 ✔ Phosphorus & Nitrate (NO₃⁻) – separate analysis
Why do we fertilize turf?

Basic Reasons

☆ Color
 ✓ We are in a quality business – it must look good

☆ Growth & Recovery
 ✓ Divots, wear and tear, surface interaction (play)
 ✓ Yields are not important

UGA Soil Test Report

Information

☆ County Extension Office
 ✓ Collect & submit
 ✓ Interpret & modifications

☆ Direct to Ag. Services Lab
 ✓ www.SoilTest123.com
 ✓ Sampling instructions
 ✓ Soil Test Kit

UGA Soil Test Report

Components

☆ Results
 ✓ Nutrients – P, K, Ca, Mg, & Zn
 ✓ Relative sufficiency
 ✓ pH – soil acidity

☆ Recommendations
 ✓ Guide
 ✓ Not instructions
Soil Test Report - Other

Other Information

☆ Nutrients

✓ Na, Fe, Mn, S, Cu, & B
✓ NO₃-N

☆ Soil Properties

✓ CEC, Base Saturation & Acidity
✓ EC & Soluble Salts
✓ OM

Soil Test - Example

Good Report or Bad

☆ pH

? High – especially for SA
✓ Ca & Mg indicators

☆ Phosphorus

✓ Over applied
✓ Not needed this season

Soil Test - Example

Good Report or Bad

☆ pH

? Low – need lime
✓ Ca & Mg - alright

☆ Phosphorus

✓ Not needed this season

☆ Potassium

✓ Needed
Purchasing a Fertilizer
Considerations

☆ Price
 ➔ Know what’s in it!

☆ Analysis or Grade
 ✓ % N, P₂O₅ & K₂O

☆ Type of Nitrogen
 ✓ Soluble / fast release
 ✓ Slow release

Analysis, Ratios, & Rates
What’s the Difference

☆ Analysis
 ✓ % N, P₂O₅ & K₂O
 ✓ 16-4-8

☆ Ratio
 ✓ relative amount of N, P & K fertilizer product
 ✓ Helps evaluate a fertilizer product for specific
 plant demands & soil characteristics
 ✓ 4:1:2

Analysis, Ratios & Rates
What’s the Difference

☆ Rate
 ✓ Amount of fertilizer applied over a given area
 ✓ 1 lb N / 1000 ft²
 ✓ More important than the fertilizer analysis or
 grade
Soil Acidity (pH)

pH
Two Tests
* pH
 ? Need
* Lime Buffer Capacity
 ✓ Adams-Evans Buffer
 ? How much

pH
Adjusting pH (5.5 to 6.5)
* Lime
 ✓ increase pH
* Sulfur & some Fertilizers
 ✓ lowers pH
 ✓ NH$_4^+$
 ✓ Urea
pH - Lime

- Slowly soluble
- Raise pH
- Pelletized & powdered
- Calcitic – calcium carbonate
 - calcium carbonate (CaCO₃)
- Dolomitic
 - calcium-magnesium carbonate (CaMg(CO₃)₂)

PH - Turfgrasses

Turfgrass Species

★ 5.0 to 5.5
 - Bahiagrass
★ 5.0 to 6.0
 - Centipedegrass

★ 5.5 to 6.5
- Bermudagrass
- Centipedegrass - establishment
- St. Augustinegrass
- Seashore Paspalum
- Tall Fescue
- Kentucky Bluegrass
★ 6.0 to 7.0 – Zoysiagrass
Nitrogen (N)

Role in the plant

- Synthesis of proteins & chlorophyll
 - DNA & RNA
 - Protein composes 85% of N in plants
- Needed for growth of all plant parts
- Mobile
 - from old to young growing regions
Nitrogen (N)

In Soil
- Increases – U.S.
 - From south to north
 - From east to west
 - Result of temperatures & soil water
- Surface has greatest N concentration
 - Aeration & microbial activity
 - Upper 3 to 10 inches

Timing N Fertilization

Warm-season Grasses
- Soil Temperatures
 - Active root growth & activity
 - 65° F
 - Consistently – multiple days
 - 4-inch depth
 - www.GeorgiaWeather.net
 - Combination products

Is now a good time to fertilize?
- Nitrogen
 - Let soil temps guide
- Phosphorus & Potassium
 - Soil test
 - Potassium (K) good carrier
 - preemergence herbicide
 - insecticide
Cultural Practices

Fertilization

✓ When - soil test
✓ What to use – Soil Test
✓ How Much - rarely exceed 1 lb N per 1000 ft²
✓ Application - uniform (2 directions)

Adverse Affects

High N Fertilization

☆ Succulence or Juiciness of Vegetation
 ✓ Increased proportion of water w/in cells
☆ Thinner cell walls
☆ Promotion of protein synthesis
 ✓ expense of carbohydrate synthesis & accumulation

Adverse Affects

High N Fertilization

☆ Susceptibility to pests
 ✓ diseases – Brown Patch, SDS, etc.
 ✓ insects – sap suckers
 ✓ thin cell walls
☆ Susceptibility to environmental stresses
 ✓ drought
Available Sources of N

Plants use inorganic N

- **Nitrate (NO$_3^-$)**
 - easily leached

- **Ammonium (NH$_4^+$)**
 - converted to NO$_3^-$ in soil – *nitrification*
 - Nitrification – rapid in warm, aerated soils
 - lowers soil pH

Origins of N

Organic

- **Natural Organics**
 - thatch / crop residue
 - sewage sludge
 - poultry feather meal
 - bone meal blood
 - manure

Organic N

Benefits

- low turf burn potential
- uniform N release
- little effect on soil pH
- low leaching losses
Organic N
Suggested Benefits
✓ may enhance plant metabolism & disease resistance
✓ contain sulfur, iron, & trace elements

Organic N
Disadvantages
× low N content
 ★ 1 to 8%
 ★ $\$ per pound of nutrient

× low N release cool weather
 ★ microbe dependent
 ★ temperature mediated

Organic N
Disadvantages (cont.)
× objectionable odor
× salts, heavy metals, weed seeds
× increased insect populations
 × black turfgrass ataenius
Origins of N

Synthetic Organics

* water soluble
* urea \rightarrow NH$_4^+$
 ✓ rapid release
* urea formaldehyde
 ✓ slowly soluble
* isobutylidene diurea (IBDU)
 ✓ temp dependent

Origins of N

Inorganic

* Synthetic Inorganics
 ✓ ammonium nitrate
 ✓ ammonium sulfate
 ✓ calcium nitrate
 ✓ potassium nitrate
 ✓ nitrate of soda

Phosphorus (P)
Fertilization

Phosphorous (P\(_2\)O\(_5\))
- Reported in oxide form
- 43% P
- Slowly soluble
- Super Phosphate (0-18-0)
- Triple Super (0-45-0)
- Promotes Rooting
- Till into soil

Phosphorus Fertility

Phosphorus (P)
- Granular P ferts. are 90 to 100% water-soluble
- Dissolve rapidly in moist soil
- Hydrolysis of water-soluble P increase when temps. increased from 41° F to 95° F
- At field capacity, 50 – 80% water-soluble P will move out of granular in 24 hours; 20 – 50% at 2 – 4% soil moisture.

Phosphorus (P)

Role in the plant
- Nucleic acids & nuclei of plant cells
 - DNA & RNA
- Energy
 - ATP – adenosine triphosphate
 - Other P containing components
- Location – growing points / tips
Phosphorus (P)

Forms & Sources
- Absorbed by plants
 - Phosphate - $\text{H}_2\text{PO}_4^- \text{ & HPO}_4^{2-}$
- Sources
 - Natural - superphosphate
 - Organic – e.g. bone meal
 - Chemical – ammoniated phosphate

Phosphorus (P)

Considerations
- Relatively immobile in soils
- Effect on soil pH
 - Ammoniated phosphates lower soil pH
 - Superphosphate (SP) & triple SP increase soil pH
- Environmental hazards
 - Water quality – algal bloom
 - Soil test for need

Proper Fertilizer Usage

Common Sense
- Proper rate
- Application (sidewalks)
- Calibration
- Timing
Potassium (K)

Fertilization
Potassium (K₂O)
- 83% K
- “Health” element
- Promotes Rooting
- Stress preconditioning
- Till into soil
- N:K (2:1)
- Part of last application (1:1)

Potassium (K)
Role in the plant
- Maintaining plant’s water status
 - cellular turgor pressure
 - opening & closing of stomata
 - osmotic pressure for water to enter roots
- Enzyme activation
 - associate with >60 enzymes
Potassium (K)

Mobility

☆ Soil
 ✓ readily leached
 ✓ commonly low to deficient in Georgia soils

☆ Plant
 ✓ translocated to young meristematic tissue
 ✓ interveinal yellowing of older leaves
 ☺ root entrance competition with K⁺, Ca⁺² & Mg⁺²

Potassium (K)

Forms & Sources

☆ Absorbed by plants
 ✓ Ion form – K⁺
 ✓ From the soil solution

☆ Sources
 ✓ Muriate of potash – potassium chloride (KCl)
 ✓ 1° K-containing fertilizer
 ✓ Sulfate of potash – potassium sulfate (K₂SO₄)
 ✓ Saltpeter – potassium nitrate (KNO₃)

Turfgrass Management App

For Sale Application

☆ iTunes – iPhone & iPod Touch

☆ BlackBerry

www.GeorgiaTurf.com
Important Dates in 2010

- UGA Turfgrass Field Day – August 4
- Turfgrass Institute – Dec. 8 & 9
- For other local programs contact your CEA

Thank You

Visit
www.Georgiaturf.com