Disease control in tobacco involves an integrated program of numerous practices. Useful practices include crop rotation, root and stalk destruction, nitrogen management, plant spacing, varieties, and chemicals.

CROP ROTATION

Crop rotation is a particularly useful practice in dealing with pathogens that live in the soil. Rotation causes pathogen populations to decline naturally in the absence of suitable food sources. The longer tobacco can stay out of a field, the more beneficial the program will be. In general, small grains and forage grasses are the best overall crops to rotate with tobacco. In the case of root-knot nematodes, selection of the best rotational crop depends upon which root-knot species are present. Cotton is a good choice where Javanese and/or peanut root-knot is present, but a poor choice where high levels of Southern root-knot are present. Corn, though always better than continuous tobacco, is not always ideal due to variation in how corn varieties respond to different nematode populations. Soybeans vary greatly in susceptibility to root-knot nematodes and it is fairly easy to select a variety that would be more beneficial in a particular case. As with other diseases, small grains and forage grasses work well. In most cases, even native weeds would be better than continuous tobacco.

NITROGEN MANAGEMENT

Excess nitrogen causes a nightmare of sucker problems and favors several diseases. Use the full amount of nitrogen needed to produce a top quality crop, but not a bit more. Even small amounts of excess nitrogen can result in a significant, usually negative response in tobacco.

PLANT SPACING

A field spacing of about 20-22 inches between plants has been shown to produce the best tobacco. Tighter spacing puts more plants per acre and restricts air movement between plants. Restricted air movement slows drying and increases suitable pathogen habitat by favoring both infection and spread of diseases. Increasing plant population by decreasing in-row spacing to compensate for loss from tomato spotted wilt virus is not recommended. Following such a practice would lead to increased sucker control problems every year and increased losses from blue mold, target spot, angular leaf spot and hollow stalk in wet years. Reduced plant spacing will also lead to more rapid and extensive spread of tobacco mosaic virus.

EARLY STALK AND ROOT DESTRUCTION

This practice, also known in North Carolina as R-9-P for reduce nine pests, is very important. Root and stalk destruction as soon as possible after harvest reduces overwintering populations of pathogens infesting these plant parts. The root destruction part of the program also eliminates fall and winter suckers which feed infested roots and serve as sources for build-up of foliar diseases. Blue mold and viruses can carry over during a mild winter in these suckers.

The four steps involved in a good root and stalk destruction program are outlined below:
1) Cut stalks into small pieces with a rotary or flail mower as soon as possible after harvest.
2) Plow or harrow the stubble immediately after stalk cutting. Be sure to pull roots completely out of the soil.
3) Cross harrow the field two to three weeks after Step 2.
4) When roots are fully dried out and dead, plant a winter cover crop to reduce soil erosion.
VARIETIES

Resistant varieties are useful for control of some tobacco diseases. Growers should not rely on the same variety for disease control year after year. Pathogens can adapt through build up of initially minor species or races and in time overcome any variety. This has been clearly demonstrated for black shank and root-knot nematodes. Rotating varieties is a good idea and should slow down loss of resistance to black shank. Table 4 in the Variety Section of this book lists common tobacco varieties and their disease resistance properties.

Table 1. Common Tobacco Diseases and Various Control Practices

<table>
<thead>
<tr>
<th>Disease</th>
<th>Rotation</th>
<th>Root & Stalk Destruction</th>
<th>Nitrogen Management</th>
<th>Plant Spacing</th>
<th>Varieties</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-Knot</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Black Shank</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Blue Mold</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Brown Spot</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fusarium Wilt</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes**</td>
<td></td>
</tr>
<tr>
<td>Soreshin</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Target Spot</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Angular Leafspot</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td></td>
</tr>
<tr>
<td>Granville Wilt</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Hollow Stalk</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tobacco Mosaic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Tobacco Etch</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Potato Virus Y</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tomato Spotted</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Wilt Virus</td>
<td>Yes*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes**</td>
</tr>
</tbody>
</table>

Yes = Useful in control, though may not give total control;
-- = Not known to be useful in control.
Yes* = Recommended in some areas, but should not be relied upon in all situations.
Yes** = Nematode control practices reduce Fusarium Wilt.

BLUE MOLD

Blue mold caused by *Peronospora tabacina* is spread by spores carried long distances by wind. Ideal conditions for blue mold would be night temperatures above 50 °F, day temperatures about 70 °F along with fog, rain or dew to keep leaves wet.

Long distance spore movements are tracked by the North Carolina Blue Mold Forecast System. This system can give up to 48 hours warning of blue mold spore movement. This information can be accessed via the world wide web at: http://www.ces.ncsu.edu/depts/pp/bluemold/

These forecasts may be used to trigger treatment or intense scouting depending on the level of risk each individual wishes to assume. These forecasts are useful to predict first movement of blue mold into an area. Once blue mold is present, local weather conditions should be used to make further treat/don’t treat decisions.
Table 2. Blue Mold Control

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate Per Acre Per Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORUM™ fungicide</td>
<td>2 - 8 oz</td>
<td>Select Forum rate and spray volume/acre from table below. To be effective Forum requires total plant coverage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORUM™ fungicide must be applied as a tank mix with another fungicide that has a different mode of action (non-group 15 fungicides)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks of Growth After Transplant</th>
<th>Rate of FORUM™ fungicide (oz of Product)</th>
<th>Water Output (Gallons/Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recently Transplanted to 3 weeks after transplanting.</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3-4 weeks after transplanting (Knee High)</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4-5 weeks after transplanting (Waist High)</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>6-7 weeks after transplanting (Chest High)</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>7 weeks after transplanting and beyond (Shoulder height up to topping)</td>
<td>7</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Above directions are for dilute sprays. If concentrate sprays are used, adjust rate and volumes proportionally, e.g. for mist blows, use 2X concentrate and ½ the spray volume.

Begin applications when the Blue Mold Advisory states that conditions favor development of blue mold, and before the onset of disease. Continue applications on a 5-7 day spray schedule until weather conditions favoring infection and sporulation decrease. Discontinue sprays when and if the threat of blue mold subsides. **Restrictions (Field Applications):** DO NOT exceed 8 oz/acre per application. DO NOT exceed 30 oz/acre of FORUM™ fungicide per season. Tobacco may be harvested the day of the last application, after spray has dried.

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate Per Acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actigard 50 WG</td>
<td>0.5 oz</td>
<td>Apply Actigard any time after tobacco reaches 18 inches high. Make a second application 10 days later</td>
</tr>
</tbody>
</table>

Actigard is not a traditional fungicide. Actigard induces a disease resistance mechanism in some plants including tobacco. It takes 5-7 days after an Actigard application for the disease resistance process to become fully effective.
BLACK SHANK

Black Shank is caused by the fungus *Phytophthora parasitica* var. *nicotianae*. DO NOT GROW TRANSPLANTS IN ANY FIELD WHERE BLACK SHANK IS KNOWN TO HAVE OCCURRED. METHYL BROMIDE WILL NOT ERADICATE THIS FUNGUS OR GUARANTEE DISEASE FREE TRANSPLANTS. Black shank infection is favored by wet spring weather. Highest losses then occur during dry summer periods as rotted roots fail to keep up with water demands. Typically black shank results in extensive root rotting, pith disking and decomposition, and blackening on the outer surface of the stalk. Resistant varieties show less obvious symptoms in the pith.

USE ROTATION

One of the best control measures for black shank is rotation. Keep tobacco out of fields with a history of black shank as long as possible. Alternate year production provides little or no benefit. Three or more years rotation will provide a consistent moderate to high level of benefit.

Table 3. Chemical Control of Black Shank

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate Per Acre</th>
<th>Pounds Active Ingredient</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mefenoxam) 2</td>
<td></td>
<td>(1 + 0.5 - 1.0)</td>
<td>Transplant Water: For best results mix in a tank separate from transplant water and meter into planter furrow with calibrated nozzles.</td>
</tr>
<tr>
<td>Transplant Water (TPW)</td>
<td></td>
<td>(4-8 oz/A)</td>
<td></td>
</tr>
<tr>
<td>Ridomil Gold</td>
<td></td>
<td></td>
<td>Broadcast-Incorporate prior to setting.</td>
</tr>
<tr>
<td>After Transplanting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridomil Gold</td>
<td>(1 pt PPI + 0.5-1 pt layby)</td>
<td>Apply mefenoxam at layby using two drop nozzles per row. Direct spray to bed. Follow with layby plowing.</td>
<td></td>
</tr>
<tr>
<td>Ultra Flourish</td>
<td>(1 qt PPI + 1-2 pt layby)</td>
<td>Mefenoxam may be applied to the beds at first plowing if heavy rainfall (>1") occurred since the PPI/TPW treatment.</td>
<td></td>
</tr>
</tbody>
</table>

1 Where root-knot nematodes and the black shank fungus occur in the same field, use a preplant fumigant for nematode control.
2 Additional mefenoxam may be applied at any plowing if >1" of rainfall has occurred since transplanting or field history warrants.
3 Mefenoxam should be applied 48 hours prior to or within 24 hours after transplanting. Any delay between treatment and transplanting can result in chemical loss by leaching or breakdown.

FOLIAR APPLICATIONS OF RIDOMIL GOLD/ULTRA FLOURISH FOR BLACK SHANK CONTROL ARE ILLEGAL AND USELESS!

1) Very little mefenoxam is taken up by leaves.
2) Almost none of the mefenoxam taken up by a leaf moves out of that leaf.
3) All mefenoxam movement in plants is upward away from the roots where the black shank fungus enters.

USE RESISTANT VARIETIES

Seventy five percent of the tobacco now grown in Georgia is rated as having high black shank resistance. This is based on the presence in these varieties (NC 71, NC 72, NC 297, NC 196,Speight 168, etc.) of a single gene (Php gene) giving total resistance to pathogen race O. A statewide survey conducted in 1994 found a second race
designated pathogen race 1 at very low levels but scattered all over the Georgia tobacco production area. SOME OF THE NEW PATHOGEN RACE 0 RESISTANT VARIETIES HAVE LITTLE OR NO RESISTANCE TO PATHOGEN RACE 1. Black shank is becoming common in these varieties and in all cases has been found to be pathogen race 1. CONTINUOUSLY GROWING THESE VARIETIES HAS SELECTED AND BUILT UP PATHOGEN RACE 1. If any black shank is seen on a Php gene variety select subsequent varieties based on FL 301 resistance.

The only way to minimize losses is:

I. ROTATE OUT AS LONG AS POSSIBLE
II. USE A SOUND CHEMICAL CONTROL PROGRAM (TABLE 3.)

BACK-UP ANY FL 301 RESISTANT VARIETY WITH A SOUND MEFENOXAM PROGRAM(Table 4.)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Black Shank Rating</th>
<th>Final % Black Shank</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Check</td>
<td>Ridomil Gold²</td>
</tr>
<tr>
<td>K 326</td>
<td>L</td>
<td>51.1 a</td>
<td>26.5 a</td>
</tr>
<tr>
<td>GL 737</td>
<td>M</td>
<td>30.4 b</td>
<td>11.2 bc</td>
</tr>
<tr>
<td>NC 297</td>
<td>M</td>
<td>26.8 b</td>
<td>13.6 b</td>
</tr>
<tr>
<td>Spt H 20</td>
<td>H</td>
<td>19.4 bc</td>
<td>6.8 bc</td>
</tr>
<tr>
<td>NC 71</td>
<td>H</td>
<td>17.2 c</td>
<td>3.9 c</td>
</tr>
</tbody>
</table>

1Ridomil was applied at 1 pt/A at transplanting + 0.5 pt/A at 1st plowing + 0.5 pt/A at layby.
²Reduction in black shank with Ridomil for each variety is significant (p=0.05).

BROWN SPOT

Brown spot, caused by Alternaria alternata, is a foliar disease that usually develops from mid season to harvest. It begins in the lower leaves and works up the plant. Brown spot is favored by wet weather, excess nitrogen and tight plant spacing. Fungicides are not effective for brown spot control.

FUSARIAUM WILT

Fusarium wilt, caused by Fusarium oxysporum f.sp. nicotianae, is not a common problem. It is a serious problem where it occurs. Symptoms usually develop on one side of the plant with distinctive leaf yellowing and drying. Peeling the outer bark will reveal brown to black discoloration in the woody stem cylinder. Initially there is little root rot. The best control for Fusarium wilt is to abandon an infested site. Where this is not practical long rotations with forage grasses or small grains are recommended. Root-knot nematodes will make Fusarium wilt much worse. In Fusarium infested sites, treatment with multi-purpose fumigants and RKN resistant varieties are useful.
SORESHIN

Soreshin is caused by the fungus *Rhizoctonia solani* AG-4 and usually develops during the first 4-6 weeks after transplanting. This disease is favored by rough handling transplants and cool, wet weather. Sand blasting stems in wind storms often leads to soreshin. There is no chemical control for soreshin.

TARGET SPOT

Target Spot is frequently seen in plantbeds. It caused damage in Georgia tobacco fields for the first time in 1991. It is caused by races of *R. solani* in group AG-3 which are different from those causing soreshin.

In plantbeds and greenhouses the symptoms are small brown greasy looking spots. In the field it occurs first on lower leaves and in very wet seasons can move to some extent up the plant. Symptoms begin as small spots similar to what is seen in plantbeds. On field tobacco the spots enlarge, become somewhat circular, light colored, and papery with a target like pattern of concentric bands. Target spot is very difficult to distinguish from brown spot by symptoms alone. Target spot is favored by long periods of leaf wetness and continuous moderate temperatures (68°F - 86°F). These are similar to the conditions that favor blue mold. The *R. solani* races that cause target spot have always been present in our soils. The growing season weather will regulate future occurrence of target spot.

Table 5. Application of Quadris for Target Spot

<table>
<thead>
<tr>
<th>Chemical and Rate Per</th>
<th>Pounds Active</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>Acre</td>
<td>Ingredient</td>
</tr>
<tr>
<td>(azoxystrobin)</td>
<td>(0.1-0.2 lb)</td>
<td>Make a single application at the first sign of target spot. Full plant coverage is necessary. Use drop nozzles as needed.</td>
</tr>
<tr>
<td>Quadris F</td>
<td>(6-12 oz.)</td>
<td></td>
</tr>
</tbody>
</table>

ANGULAR LEAFSPOT

Angular leafspot, caused by *Pseudomonas syringae* pv. *tabacina*, is a bacterial disease favored by wet weather, excess nitrogen, excess lime (high pH), low topping and tight plant spacing. Any handling of plants in infected fields during wet periods will spread the disease. Streptomycin sprays have been recommended in various sources for angular leafspot control. The value of these sprays is questionable. It is not economical to apply them every year, yet bacterial diseases become very hard to control once they are present in the field. The disease increases during wet weather. A warm, dry period that would dry the field out and allow for spraying usually halts spread of the disease. The program usually recommended is a solution containing 200 ppm Streptomycin applied at 25-35 gallons per acre every 7 days.

GRANVILLE (BACTERIAL) WILT

Granville wilt, caused by *Ralstonia solanacaerum*, is not a common problem in Georgia. However, it is a very serious problem for the growers who have it. Tobacco variety resistance to Granville wilt is given in Table 4. of the Variety Section of this book. Corn, cotton and peanuts are poor choices for rotational crops in fields where Granville Wilt is a problem. Use soybeans, small grains or weeds in these fields. In fields with a known history of Granville wilt use a multi-purpose fumigant such as Chlor-o-pic at 3 gpa or Telone C-17 at 10.5 gpa.

Above ground symptoms of Granville Wilt are virtually identical to those of Fusarium Wilt. In early stages before secondary deterioration begins, internal symptoms are somewhat different. Granville wilt usually shows
a general darkening. Fusarium wilt will show dark streaks in the vascular tissue while the pith remains white. A way to verify Granville wilt is to suspend one end of a stem section in warm (not hot) water for two to 10 minutes. Set the stem section so that one end is about one inch under water, two inches or so above the bottom of the water reservoir. If Granville wilt is the problem, a distinct cloudy fluid or material will usually flow out of the underwater stem end.

HOLLOW STALK (Soft Rot, Barn Rot)

These diseases are caused by the bacteria, Erwinia carotovara var. carotovora. Disease is favored by tight plant spacing and wet weather, particularly during topping season. When the disease is present, tops and suckers should not be pulled while the plants are wet. High rates of contact sucker control chemicals can contribute to disease in wet seasons. When disease is present, harvest should be avoided while the leaves are wet. Packing wet infested leaves into boxes or racks can result in further losses from barn rot.

TOBACCO ETCH VIRUS (TEV) and POTATO VIRUS Y (PVY, VEIN BANDING)

TEV and PVY are aphid transmitted viruses. The virus is carried as a contaminant on the mouth parts. The virus is picked up in feeding on infected plants. Virus can be transmitted to a healthy plant if an aphid feeds as briefly as 10 seconds. Nearly all the virus particles the aphid carries are wiped off of its mouth during the first feeding after picking up virus. Insecticide sprays will not help control these or other aphid borne diseases.

TOMATO SPOTTED WILT VIRUS (TSWV)

TSWV first appeared in Georgia tobacco in 1986. Leaf symptoms are quite variable and include necrotic banding along and around the main veins, target-like ring spots, leaf twisting with symptoms on only one side of the midrib, and/or general necrosis of bud leaves. Stalk symptoms are also somewhat variable. Early in the season the lower stalk may show a dark, somewhat sunken, area resembling soreshin. Near topping time, parallel black necrotic bands (curved or straight) may be seen moving down the stalk from infected leaves. These bands are different from the usual russet streaks that come form contact sucker control products. Large plants may develop symptoms (stalk and leaf) on one side or the entire stalk may become necrotic causing a rapid wilt, leaf yellowing and death. Near harvest, stalks of infected plants seem to blacken and rapidly deteriorate.

TSWV is spread by thrips. In tobacco the major carrier of TSWV is the tobacco thrips Franklinella fusca. TSWV must be picked up by juvenile thrips feeding on infected plants. TSWV may be spread by both juvenile and adult thrips. In tobacco, adult thrips are believed responsible for most infection.

Weeds provide the source of TSWV. About 30 species of common broad leaved weeds have been found to host TSWV in Georgia. Ten to 12 weed hosts of TSWV are present any time of the year. Tobacco thrips acquire the virus in native weed communities and bring it to tobacco as they move about in search of feeding sites. Weeds near tobacco may be more important than weeds further away but thrips are active flyers and move whatever distance is necessary to find suitable habitat.

SPOTTED WILT MANAGEMENT

I. TRANSPLANT DATE

The response to transplant date varies from year to year and from farm to farm in any particular year. No single best time to plant or not plant can be identified. However, in combining the results of all transplant date trials the data shows the risk of most spotted wilt is twice as great in tobacco planted before 7 April as compared to planting after 7 April.
II. SYSTEMIC INSECTICIDES

Admire 2F (imidacloprid) was labeled for TSWV suppression in 1997. In over 125 trials we have seen about 30% reduction of spotted wilt with Admire 2F. Recently new products such as Platinum/T-Moxx (thiamethoxem) have also been found effective. Admire 2F was replaced by Admire Pro 4.6 SC in 1996. There are several generic 2F formulations of imidacloprid that have been tested.

TABLE 6. APPLICATION OF SYSTEMIC INSECTICIDES IN PLANT HOUSE

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate per 1000 transplants</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admire Pro 4.6 SC</td>
<td>0.7 - 0.9 oz</td>
<td>Apply ALL listed products as a spray-on/rinse-off tray drench. For best results apply in the morning when plants are wet with dew. In the afternoon lightly pre-wet plants before treatment. Spray on product and immediately rinse it off leaves into the media ball where it is available for root uptake.</td>
</tr>
<tr>
<td>Generic imidacloprid 2F formulations</td>
<td>1.5 - 2.0 oz</td>
<td></td>
</tr>
<tr>
<td>(Alias, Couraze, Imia, Macho, Nuprid, Torrent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum 2SC / T-Moxx 2SC</td>
<td>1.3 oz</td>
<td></td>
</tr>
</tbody>
</table>

FLOAT BED HOUSE: Apply product of choice 2-4 days prior to transplanting
T-RAIL HOUSE: Apply after the last irrigation; 6-12 hours before transplanting

TABLE 7. APPLICATION OF SYSTEMIC INSECTICIDES IN TRANSPLANT WATER FOR BARE ROOT PLANTS

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate per 1000 transplants</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admire PRO</td>
<td>0.8 - 1.1 oz</td>
<td>Apply to transplant water with thorough mixing. Where a separate front mounted tanks are used to meter solution to transplanter provide agitation. Where nurse tanks are used with pre-mixed solutions allow 5 minutes agitation after adding chemical before pumping into planter barrel.</td>
</tr>
<tr>
<td>Generic imidacloprid 2F formulations</td>
<td>1.8 - 2.4 oz</td>
<td></td>
</tr>
<tr>
<td>(Alias, Couraze, Imida, Macho, Nuprid, Torrent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. ACTIGARD 50WG

Approval for use of Actigard in plant houses and plant beds has been granted through a special local needs registration. Product labels for this use must be acquired after accepting a Waiver of Liability and Indemnification Agreement on the Syngenta Farm Assist web site.

Under this registration the user of the product assumes ALL liability.

Acquiring a Label for Actigard™ 50WG Use in the
Plant House / Float House And/or Field Bed
to
Suppress Tomato Spotted Wilt Virus

ACTIGARD™ 50WG is a Syngenta product.
Use in the plant house / float house and field beds for TSWV suppression is not covered on the Section 3, Federal label.

Although Syngenta does not recommend the use of Actigard for TSWV they allow growers to assume all risks associated with the use of Actigard on tobacco transplants in exchange for signing a Waiver of Liability and Indemnification Agreement.

The University of Georgia Cooperative Extension recommends the use of Actigard as a part of the Tomato Spotted Wilt Virus Management Plan.

To sign a Waiver of Liability and Indemnification Agreement and receive a copy of the
ACTIGARD™ 50WG label with which to make the application each prospective user should follow the instructions on the FarmAssist website to the waiver and agreement.

Go to: http://www.farmassist.com./

At the upper, left hand, corner click Sign In or Register if you have not yet registered on this site.

Next screen, complete the Demographic Information requested and click “I Agree”.

Next screen is the Home Page. Go to the Products tab in the column on the left side of the page.

Click Syngenta Crop Protection, then Special Labels.

Next screen, just under the statement “If searching for indemnified labels, click here” Click “here”

Next screen, from the drop-down box choose your state, then from the next select Actigard 50WG.

Next screen, from the drop-down box select Tobacco (Flue-cured) and Click Submit.

Next screen, READ the Waiver of Liability and Indemnification Agreement, Click “I Accept”

After clicking “I Accept” you will then see a copy of the Actigard 50WG Section 24(C) Special Local Need Label needed to make the application to tobacco seedlings in the greenhouse for Tomato Spotted Wilt Virus suppression. This labeling must be in the possession of the user at the time of pesticide application.

You may print a copy of the label for your personal use, but it is not to be shared with others as you have agreed by name to the Waiver of Liability and Indemnification Agreement and you have assumed ALL liability for the use of this product.
TABLE 8. APPLICATION OF ACTIGARD TO TRANSPLANTS

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actigard 50WG</td>
<td>1.0 oz per 100,000 plants</td>
</tr>
</tbody>
</table>

- Spray Actigard over plants in houses or beds 5-7 days before transplanting.
- Potential for plant injury depends largely on plant size at the time of treatment.
- DO NOT treat until plants are large enough to transplant

USE ACTIGARD WITH IMIDACLOPRID IN A JOINT PROGRAM.

USE ACTIGARD VERY CAREFULLY:

1. Delay treatment until seedlings are field ready.
2. DO NOT exceed 1.0 oz/100,000 plants
3. DO NOT treat plants with Actigard a second time.
4. DO NOT hold Actigard treated bed plants more than a day after pulling. Treated plants which are held do not perform as well as fresh plants. **DO NOT** allow treated plants in trays to dry out on the trailer.
5. Place unused trays back in floatwater or sprinkler water unused trays each day.
6. Use plenty (100 gal/A) of transplant water.

Even when Actigard is used carefully some plant damage in the form of slow early season growth may occur. How well plants recover depends on field environment the first few weeks after transplanting.

1. Use transplant water.
2. DO NOT plant in dry soil; pre-wet beds if necessary
3. AVOID transplanting on dry windy days
4. Irrigate before plants become stressed.
TSWV Management Plan for Tobacco

1. Transplant after April 7.
 Data indicate twice as great a chance of high incidence of disease prior to this date.

2. GREENHOUSE PLANTS
 a. ADMIRE PRO @ 0.7 - 0.9 oz/1000 tray cells as per Growers Guide
 or Generic Imidacloprid 2F @ 1.5 - 2.0 oz/1,000, tray cells
 or Platinum/T-Moxx @ 1.3 oz/1,000, tray cells

 i. Apply and rinse-off foliage 2 to 4 days before transplanting
 - Use 10 to 12 gallons of solution per 100,000 cells for application
 and again for rinse-off of the residue.

 ii. T-rail plants: avoid excessive irrigation after application.
 - Water only to maintain plants. Trays should not drip.

3. BARE ROOT PLANTS – (Apply chemical in transplant water as per Growers Guide)
 a. ADMIRE PRO @ 0.8 - 1.1 oz/1000 plants
 or Generic Imidacloprid 2F @ 1.8-2.4 oz/1,000 plants

4. ALL PLANTS (Plant house / Float house and Bare Root Plants)
 a. ACTIGARD @ 1.0 oz/ 100,000 plants as per Growers Guide

 i. apply ACTIGARD only to plants large enough and old enough to be transplanted. Use
 10 to 12 gallons of solution per 100,000 cells for application.

 ii. apply ACTIGARD 5-7 days before expected transplant date.

 1. ACTIGARD treatment is effective and plants may be used for at least 10 to 14 days
 after treatment.

 2. DO NOT RE-TREAT PLANTS WITH ACTIGARD

 3. DO NOT HOLD ACTIGARD treated plants overnight after removal from beds or
 plant houses / float houses.

5. Pre-water field beds during periods of drought and/or wind before transplanting.
 A day or two delay in planting is better than planting ACTIGARD treated plants in dry beds. ACTIGARD treated plants do not tolerate stress well.

6. USE ADEQUATE TRANSPLANT WATER TO ENCOURAGE PLANT ESTABLISHMENT

7. AVOID Transplanting on hot, dry, windy days.
ROOT-KNOT NEMATODE

Root-knot nematode (RKN) is the major nematode problem facing Georgia tobacco growers. Control of RKN is becoming more complicated each year. A virtual complete shift to varieties resistant to race 1 & 3 of Southern RKN has resulted in selection of previously minor species and races of RKN and elevating these to major pests. As a result, Javanese, race 2 and/or 4 of Southern and, to a lesser extent, peanut RKN are now major tobacco pests. There are no varieties resistant to these species or races leaving root destruction, crop rotation and chemicals as the only control options. Control of Javanese and peanut RKN must be more thorough than with the traditional Southern RKN because as individuals these species are much more damaging to tobacco.

ROOT AND STALK DESTRUCTION SHOULD BE DONE THOROUGHLY.

CROP ROTATION

In selecting rotational crops the grower must know which RKN species and races are present. For example, cotton is a good rotational crop for Javanese and Peanut RKN, but a poor one for Southern RKN. Soybeans vary widely in their resistance to various RKN species. Choice of best variety depends upon the specific RKN present.

NEMATODE SAMPLING

The only way to know what is present is to sample the field. Samples taken in the fall or winter especially following crops other than tobacco are almost worthless. When taking nematode samples, follow the guidelines outlined below:

1) Sample during the tobacco growing season (15 June - 15 July).
2) Sample moist soil, Do not add water to dry samples.
3) Sample the entire field.
4) Sample problem areas separately from non problem areas.
5) Keep samples in a portable cooler between collection and delivery to the County Extension Office. This will keep the samples from overheating which kills and rots nematodes very quickly.
6) Sample early in the week so samples will arrive at the lab in Athens the same week as collected.
7) Fill out the nematode sample form completely including tobacco variety information.
8) Check tobacco roots for nematode galls. These can be used to determine RKN species present. Knowing which kinds are present is much more useful than knowing how many.
9) Sampling crops other than tobacco the year before growing tobacco is generally a waste of time.

ROOT EXAMINATION

Root examination is very useful in evaluating nematode problems. From mid June until mid July, dig up a few stalks at various points in the field and look at the roots for galls. If RKN is present some galls may be seen on any variety regardless of what chemical nematicide is used. However, if root systems are consistently 25% or more galled, some loss is occurring and the control program should be reviewed. Always look at root systems in areas of any field where the tobacco does not grow well. Once the RKN population has been defined, the best rotational crops and chemical nematicide can be chosen.
ROOT-KNOT NEMATODE SPECIES IDENTIFICATION

The Extension Nematology Lab has technology to enable accurate identification of RKN species. The charge for this procedure is $35 per sample. The procedure is expensive so growers taking advantage of this service are asked to:

A. Use it only where reasonable suspicion of a problem exists (numerous galls on RKN resistant varieties).
B. Keep good records so as to not continually re-sample fields where problems have been identified. Nematode populations vary with crop history and season, but they do not go away.
C. Handle samples for root-knot nematode species identification through the county agent as with conventional nematode samples. Sampling involves mid-June to mid-July collection of plant roots. Samples are to be collected in the following manner.

1) Map out the field and dig rather than pull up sample plants.
2) Gently shake off most soil.
3) Select for testing plants with moderate to severely galled root systems that show NO sign of secondary rotting or gall breakdown. The test requires live female nematodes to be present in the galls.
4) Collect specimen plants from several areas in a field. Take a separate sample for each 10 acre block in a field.
5) Place galled roots (tops should be cut off) in plastic bags containing moist field soil and store in a cooler. It is not necessary to send the whole root system. Individual roots with galls on them are good enough. Clip roots rather than pulling roots apart to avoid stripping or damaging root galls. DO NOT ADD WATER.
6) Do not allow samples to heat or dry out.
7) Collect samples early in the week (Monday or Tuesday) so they can be shipped and received in the same week.
8) Call ahead to the lab to notify them root samples are being sent. More immediate processing is needed as compared to ordinary soil samples.

For information on Sampling for Nematodes / Charges and Fees visit the Nematode Assay Results System Webpage http://www.ciids.org/nars/

Contact Information for Nematology Laboratory

Ganpati B. Jagdale, Ph.D.
Extension Nematology Laboratory
Department of Plant Pathology
University of Georgia
2350 College Station Road
Athens, GA 30602

Phone: (706) 542-9144
Fax: (706) 542-5957
e-mail: gbjagdal@uga.edu
Table 10. Fumigant Nematicides

<table>
<thead>
<tr>
<th>Chemical and Formulation</th>
<th>Rate Per Acre</th>
<th>Rate Per 100 Ft. of Row</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3D (Telone II)</td>
<td>42" Row Treatment</td>
<td>cc</td>
<td>fl oz</td>
</tr>
<tr>
<td></td>
<td>6 gals</td>
<td></td>
<td>Inject 8 inches deep on the flat or 4-8 inches below top of a high wide bed. Seal by bedding or dragging. Wait 3 weeks between application and setting. Break bed open 1-2 days prior to setting.</td>
</tr>
<tr>
<td>Pic Plus (Chloropicrin 86%)</td>
<td>48" Row Treatment</td>
<td>184 6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 gals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A fumigant nematicide is recommended when nematode damage potential is moderate to high, or when either Javanese (Meloidogyne javanica) or Peanut (M. arenaria) root-knot nematode is known to be present, or when either Fusarium wilt or black shank is known to occur in the field.

** Multipurpose fumigants such as Telone C-17 or Telone C-35 are also effective. These products are more costly than Telone II and only provide cost effective disease control when Granville wilt is also known to occur. In Georgia, multipurpose fumigants have never shown a consistent benefit for black shank control beyond the reduction in black shank associated with root-knot nematode control.

*** Pic Plus (chloropicrin 86%) applied at 4 gallons per acre will provide excellent control of root-knot nematode (rkn) but with quicker resurgence or rebound of rkn in the tobacco root systems in mid to late season than is seen with Telone II. No additional benefits from Pic Plus such as black shank control should be expected. Growers with fields with black history should follow recommended black shank programs involving Rotation, Resistance and chemical controls should be followed in addition to the use of Pic Plus for nematode control.

SOIL FUMIGATION Proper timing for application of soil fumigants is anytime between November 1 and March 1. Soil conditions at time of application are far more important than when or how deep the application is made.

APPLY WHEN:
1. November 1 - March 1
2. Soil is damp (not wet).
3. Air temperature is >60°F.
4. Weather forecast calls for 3-5 days of warm sunny weather.

RESISTANT VARIETIES

SOUTHERN ROOT-KNOT NEMATODE: races 1 & 3:
The root-knot nematode resistance in tobacco is specific for races 1 and 3 of southern root-knot nematode.

JAVA NEESE ROOT-KNOT NEMATODE:
There are three new varieties (CC 27 & CC 37) with southern root-knot nematode resistance and added genes for resistance to javanese root-knot resistance. These varieties do not have a high black shank resistance to all races of the pathogen.

One variety (PVH 2275) is available with resistance to M. arenaria (Peanut), but none are available with resistance to southern root-knot nematode races 2 and 4. For a listing of varieties resistant to races 1 and 3 of southern RKN refer to Table 4 in the Variety Section of this book.
SOIL FUMIGATION EQUIPMENT

Paul E. Sumner

Growers facing a high potential for nematode damage in tobacco should consider using fumigants. There are two application methods for soil fumigants: (1) broadcast application, where chisel shanks are spaced every 12 inches and the point of injection 12 to 30 inches below the soil surface. (2) row application (the most commonly used method) where the placement of the fumigant is the same depth as for broadcast application but only one or two outlets are used per row.

EQUIPMENT

Application systems can be either PTO or electric pumps. A PTO or electric pump draws fumigant from the tank and pumps it into the distribution manifold. Excess fumigant is diverted back to the tank through a by-pass valve. Flow rate is regulated by metering discs located at each shank outlet and by the line pressure, (Do not exceed 25 psi) which is regulated by the bypass valve adjustment. When the flow to the shanks is stopped, all of the chemical is bypassed to the tank. A check ball screen should be placed between the hose and the metal tube to the injection shank. This will minimize end row drips and prevent clogging of the orifice plate.

COMPATIBLE MATERIALS

Some materials may have a violent reaction when coming in contact with a particular soil fumigant. Listed are some materials compatible and not compatible with fumigants.

COMPATIBLE: HD polyethylene, nylon, Teflon, Viton, stainless steel, mild steel, brass, copper, black iron and cross-linked polyethylene.

NOT COMPATIBLE: polypropylene, rubber, plastic, aluminum, magnesium, zinc, cadmium, galvanized steel, fiberglass, EPDM, Nuna-N, neoprene and PVC.

SUPPLIERS OF EQUIPMENT

Pearman Engineering Company
Chula, Ga. 31733
912-382-9947

Harrell Equipment Co.
Pelham, Ga. 31779
1-800-673-6369

Reddick Equipment Co., Inc.
Williamston, NC 27892
919-792-1191

Van's Equipment Co., Inc.
Moultrie, Ga. 31768
912-985-1101

CALIBRATION

Applicators should always be calibrated. Use the Georgia Extension Service Circular 683 titled, Calibration Method for Hydraulic Boom and Band Sprayers and Other Liquid Applicators, to calibrate these units.

Always calibrate with clean water because fumigants are very corrosive. Fumigant applicators can be calibrated using the procedure for a conventional sprayer (previous section). Make certain to covert fumigant rates to water rates prior to the calibration. The conversion factor for Telone II is 1.1. Telone C-17 has a conversion factor of 1.13. Water rate = Fumigant rate multiplied by conversion factor.
If application rates are given in rate per 100 feet of row, simply mark off 100 feet and measure the time to travel with equipment in operation that distance. Next, with equipment in a stationary position collect in ounces flow from the outlet(s) for each row for the time to travel the 100 feet. Adjust the desired rate per 100 feet of row by multiplying by the conversion factor. If the amount collected is different from the desired rate, either change orifice plate or pressure setting.

When selecting shank or row spacing, care should be taken not to apply more fumigant than the recommended broadcast rate. Table 1 lists calculated broadcast rate based on row spacing with flow rate per 100 ft of row held constant.

Orifice disc selection for PTO and ground driven models can be determined from regular spray nozzle manuals such as Spraying Systems or Delevan. The pressure ratings are listed for 5 psi or higher.

Telone II is a fumigant that requires the use of PPE when loading and applying this product. Therefore it is recommended when calibrating Telone II application equipment water should be used. Water is less dense than Telone II. To correct for Telone II when using water to calibrate a conversion factor of 1.1 should be used.

<table>
<thead>
<tr>
<th>Row Spacing (inches)</th>
<th>Telone II (GPA)</th>
<th>Water (GPA)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12.6</td>
<td>13.9</td>
</tr>
<tr>
<td>22</td>
<td>11.4</td>
<td>12.6</td>
</tr>
<tr>
<td>26</td>
<td>9.7</td>
<td>10.7</td>
</tr>
<tr>
<td>30</td>
<td>8.4</td>
<td>9.2</td>
</tr>
<tr>
<td>36</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>38</td>
<td>6.6</td>
<td>7.3</td>
</tr>
<tr>
<td>40</td>
<td>6.3</td>
<td>6.9</td>
</tr>
<tr>
<td>42</td>
<td>6.0</td>
<td>6.6</td>
</tr>
<tr>
<td>44</td>
<td>5.7</td>
<td>6.3</td>
</tr>
<tr>
<td>46</td>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>48</td>
<td>5.3</td>
<td>5.8</td>
</tr>
</tbody>
</table>

*Water rates obtained by multiplying Telone II rate by 1.1.

MAINTAINING EQUIPMENT

Always conduct periodic checks of the systems for leaks. Each year make a practice to replace hose lines and tanks seals. Check valves, strainers, orifices and pressure regulators should be cleaned and in working order.

Cleanup and maintenance programs are much more important when fumigants are used than when less corrosive chemicals are used, even when sprayer components are made of the more corrosive resistant material. Diesel fuel or kerosene is a good material to use for cleaning machinery after applying fumigants. After fumigant applications, always flush your system with diesel fuel and fill pump with new motor oil.