Early peanut planting (prior to 5 May) is restrained in South Carolina due to concerns of increased risk from tomato spotted wilt tospovirus and stem rot, Sclerotium rolfsii Sacc. However, the ability to begin planting earlier has several potential advantages to include taking advantage of favorable soil moisture; reduced risk of late leaf spot, Cercosporidium personatum (Berk. and Curt.) Deighton; greater opportunity for rain-fed fields to recover from mid-season drought stress; less buying point congestion; and a reduced risk of yield and quality losses in wet harvest years (including less risk to cotton which typically is harvested after peanuts). Standard and resistant virginia-type varieties (cultivars NC-V 11 and Bailey, respectively) were planted on four dates (18 April, 1 May, 19 May, and 3 June) and treated with three levels of soil fungicide protection (none, tebuconazole 2X, and tebuconazole 4X). All treatments were protected from leaf spot with five total applications of either chlorothalonil or a chlorothalonil + tebuconazole tank-mix. A standard phorate in-furrow treatment (4.4 lb 15G/ac) was used to suppress thrips and spotted wilt disease in all plots. Leafhopper injury, Empoasca fabae (Harris), was greater in Bailey than NC-V 11. Thrips injury, Frankliniella fusca (Hinds), and tomato spotted wilt stunting were greater in NC-V 11 and in earlier plantings. Stem rot incidence was reduced only on the final planting date, with mean stem rot infections exceeding 25% of row length in untreated NC-V 11 for each of the first three plantings. Stem rot was markedly affected by variety, in that even the untreated Bailey plots had 92, 96, 81, and 48% less stem rot than 4x soil fungicide treatments of NC-V 11 on the above four planting dates, respectively. Soil fungicide level had a significant effect on stem rot incidence, but there was less fungicide response in Bailey. Variety had a marked effect on yield, in that for every planting date, untreated Bailey plots produced greater yield than 4x fungicide treatments of NC-V 11. Crop value (based on yield, TSMK, and ELK) was significantly affected by variety and soil fungicide level. Crop value was not affected by planting date across varieties, but there was significant interaction of planting date and variety for crop value. For NC-V 11 the greatest crop value was obtained with maximum soil fungicide treatment and a mid-May planting. However, Bailey produced greater crop value than NC-V 11, and optimum crop values were attainable with earlier planting dates and less soil fungicide. These results and those of three previous test years demonstrate a remarkable level of disease resistance in Bailey that can potentially be exploited to allow S. C. growers to plant earlier and reap benefits beyond the direct advantage of disease resistance. Bailey will require increased protection from potato leafhopper injury and will probably require greater use of growth regulator or guidance systems due to excessive canopy growth.