Success With Cover Crops

Contributing Authors:
Dr. Dewey Lee, University of Georgia
Ms. Julia Gaskin, University of Georgia
Dr. Harry Schomberg, Agricultural Research Service
Dr. Gary Hawkins, University of Georgia
Dr. Glen Harris, University of Georgia
Dr. Barbara Bellows
Why Cover Crops?

- Reducing erosion
- Improving soil quality
- Minimizing nutrient loss
- Improving water quality
- Increasing water infiltration
- Reducing weed populations
- Supplying nitrogen from legumes
Maximize Biomass

- Maintain soil fertility and pH
- Plant quality seed
- Establish a good stand
- Inoculate legume seeds - specific & fresh
- Plant early
- Terminate late
Selection of Cover Crops

- What is your cash crop?
- What are your desired benefits?
- What are your growing conditions?
- What is your experience level?
Selection of Cover Crops

What is your cash crop?

- Peanuts or soybeans: any small grain
- Corn: rye or triticale or legume
- Cotton: any small grain or legume
- Vegetables: rye, triticale, millets, legumes
Selection of Cover Crops

- What are your desired benefits?
 - Nitrogen
 - Crimson clover or hairy vetch
 - Reducing weed pressure
 - Rye/black oats > triticale
 > wheat

Annual rye - note heavy residue and no weeds
Selection of Cover Crops

• What are your desired benefits?
 - Erosion control
 • Anything with >70% cover
 - Minimizing nutrient loss
 • Deep-rooted covers (rye)
 - Improving soil and water quality
 • Cover crops in general
Selection of Cover Crops

• What are your field conditions?
 - Wet soils
 - pH
 - Sandy vs clay
 - Winter temperatures
Selection of Cover Crops

• What is your experience level?

→ None = wheat

→ Some = rye

→ Lots = clover or mixtures
Planting Cover Crops

- Planting dates
- Planting method
- Seeding rates
- Pest control
Planting Cover Crops

- **Planting Date**
 - Fall planting of cover
 - Cool season small grains and legumes
 - Spring and Summer
 - Warm season grasses and legumes

Rye planted: Nov. vs Oct.
Planting Cover Crops

• Planting methods
 - Drill or direct seeding preferred
 - Broadcast
 • Prior to peanut harvest
 • Prior to cotton defoliation
 • Broadcast and harrowing, careful of depth

• Tillage
 - Avoid soil compaction - wet soil
 - Deep tillage (paraplow or subsoil shank) improves biomass production
Planting Cover Crops

- **Seeding rate**
 - Drilling takes less seed than broadcasting.

- **Seeding depth**
 - Grasses and large seeded legumes should be planted 1 to 1.5 inches deep.
 - Plant smaller seed 0.25 to 0.5 inches deep.

<table>
<thead>
<tr>
<th>Cover</th>
<th>Drilling (7.5")</th>
<th>Broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small grains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>15 to 18</td>
<td>40 to 45</td>
</tr>
<tr>
<td>Oats</td>
<td>12 to 15</td>
<td>25 to 30</td>
</tr>
<tr>
<td>Triticale</td>
<td>15 to 18</td>
<td>40 to 45</td>
</tr>
<tr>
<td>Rye</td>
<td>18 to 22</td>
<td>45 to 50</td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson clover</td>
<td>12 to 15</td>
<td>20 to 30</td>
</tr>
<tr>
<td>Hairy vetch</td>
<td>15 to 20</td>
<td>25 to 35</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millet</td>
<td>8-10</td>
<td>20</td>
</tr>
<tr>
<td>Sorghum-sudan</td>
<td>15-20</td>
<td>30</td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velvet beans</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Cowpeas</td>
<td>30 to 40</td>
<td>60 to 70</td>
</tr>
</tbody>
</table>
Planting Legume Cover Crops

- Seed treatments for legumes
 - Inoculants

Note nodules on roots
Pest Control in Cover Crops

- Herbicides
 - May need to control weeds
 - Carry-over from previous crop
- Insects
 - Hessian fly and aphids
- Seed treatments for small grains
 - Fungicides
Cover Crop Fertility

- Small grains and summer grasses
 - Need nitrogen
- Cool season and summer legumes
 - Fix nitrogen
Fertility

• Small Grains
 - Add N to get more biomass production
 • Fall applications of N if cover is for corn
 • Winter applications of N if cover is for cotton, peanuts, soybeans or grain sorghum

• Legumes
 - Proper inoculant will produce 50 to 100 lbs N
Terminating Cover Crops

- **Timing**

![Diagram showing the stages of plant growth and their correlation with biomass and decomposition]

- Low biomass, quick decomposition
- High biomass, slow decomposition

Conservation Tillage Systems Series
Cover Crop Decomposition

- C:N ratio > 25-30 results in nitrogen immobilization
- Cover crops and C:N ratio
 - Small grains have high C:N ratio
 - Mature, older crops have high C:N ratio
 - Legumes have low C:N ratio
 - Succulent, young crops have low C:N ratio
Small Grain Termination

- Late termination for higher weed suppression
- Terminate three weeks before planting to reduce
 - Soil moisture depletion
 - Insect pressure

Note weed suppression in cotton
Legume Termination

- Minimize time between cover crop termination and planting the following crop to maximize N recovery
- Manage to allow reseeding
 - Strip termination

Note reseeded crimson clover
Terminating Cover Crops

- Termination method
 - Burn-down herbicides

Anybody got a picture of roundup being applied?
Terminating Cover Crops

- Termination method
 - Roller-crimpers

Conservation Tillage Systems Series
Cover Cropping Summary

- Cover cropping provides environmental, production, and economic benefits
- Maximum benefits come from maximum biomass
- Cover cropping needs to be managed carefully to provide desired benefits
Cover Crop Resources

- Cover crops at UGA -
 http://www.caes.uga.edu/commodities/sustainag/contillage/index.html

- Managing Cover Crops Profitably, 2nd ed. Sustainable Agriculture Network.
 www.sare.org/publications/covercrops/covercrops.pdf

- Sustainable Practices for Vegetable Production in the South
 www.cals.ncsu.edu/sustainable/peet/index.html

- National Sustainable Agriculture Information Service (ATTRA)
 www.attra.org
Information in this presentation was developed through a cooperative effort between:

- Auburn University
- The University of Georgia College of Agricultural & Environmental Sciences
- Agricultural Research Service
- Natural Resources Conservation Service
- Natural Resources Conservation Service
- Auburn University